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Abstract

Conditions are derived for dynamically stabilizing the
Rayleigh-Taylor instability of a fluid interface and for
attaining the corresponding dynamic equilibrium. These con-
ditions could be proved in experiments using an aqueous so-
lution of Potassium Iodide (?h =1.6 g/cmj) as the heavy
fluid and oil (viscosity SAE 140, ?& = 0.9 g/cmj) as the
light one. Parametric resonances were suppressed, but could
be observed using oil of lower viscosity.



Introduction

The equilibrium of superposed fluids with a horizontal boundary

is unstable 1f the density, ?h , of the upper fluid is greater

than the density, fk , of the lower one.l-4 Neglecting the effects
of viscosity and surface tension and assuming the thickness, ad ,

of the boundary layer to be small compared with the wavelengths, L ,
of the perturbations considered, the instability growth rate, 52,

was found to bel"3

92=2n8<§’h'§’2>. (1)
L Oy + P

Furthermore, if the boundary between the two fluids 1s not hori-

zontal, no equilibrium exists at all.

This paper describes a method of stabilizing the above mentioned
instability and attaining stable equilibrium in the case of non-
horizontal boundaries as well. An estimate of the stability condi-
tions 1s derived, and experimental results showing the feasibility

of this kind of stabilization are presented.

The Rayleigh-Taylor instability is also considered for the case
where the lower liquid i1s replaced by a magnetic field parallel to
the boundary layer and the remaining fluid is of infinite electri-
cal conductivity. This gilves the connection to plasma physics,
where macroscopic equilibrium and stability are usually analyzed
by means of the so-called magnetohydrodynamic (MHD) model. The ex-
periments described in this paper thus also have some relevance to

the attempts to stabilize dynamically'%—14 MHD-unstable plasma confi-

gurations and to attain dynamic plasma equilibria.15




Stability

In order to stabilize the Rayleigh-Taylor instability, we enforce
a harmonic oscillation of the frequency @ and amplitude a 1in
the vertical direction upon the system containing the two fluids.
This oscillation causes a periodic acceleration, i) , perpendicular
to the horizontal boundary layer. The time dependence of the in-
stantaneous acceleration acting on the fluids is then given by

g + ET, where

b = b coscwt (2)

and bmax = aa

The effective time-averaged potential, Ueff , of a single par-
ticle of mass m 1in a fast oscillating field with w > Q is

derived by Landau and Lifschitzl6 to be:

f2

eff s 3 "

where Us is the potential of the static case and f 1s the pe-
riodic force due to the oscillation. Applying Eq. (3) in a general
way to our problem, where we consider a perturbation of the hori-
zontal boundary with wave length L and amplitude g , the static

potential becomes

Uy = U -5 Q% g%, (4)
where m 1s now the mass of the displaced fluids and ‘UO is the
arbitrary potential of the unperturbed boundary. The maximum value
of the force f 1is g?ven by ‘3Us /Zg when replacing g by bmax
in the expression for 522 , thus

2 2
£ =—r—n§3(-ng. (5)

max g
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Note that f2 is f___°/ 2 . Combining Egs. (3), (4), and (5)

max
yields 5 i
b
: 9 2 2 1 "Pmax Q 2
U = U -=m Q + . (6)
eff o~ ? £ T o2 w2 &
This leads to the stability condition
= 2_52 (7)
b P~ ; 74
max a Q
Using the value of § from Eq. (1) yields
+
max TC a Qh - 92

Eq. (8) shows that the power necessary for stabilization increases,
firstly with increasing wavelength of the perturbations, and se-
condly with decreasing difference in the density of the two fluids,

the latter result being somewhat surprising.

For practical applications, therefore, the smallest possible
value of the instability growth rate, which can occur in a certain
device, is of interest. This is found considering the lowest value
of the oscillation frequency, Q% s of standing surface wave modes
in the stable case, where ?B is above ?h . Assuming the depths of
the fluids to be large compared with the vessel diameter or greater
lateral length, D , the value of S?o for standing waves in a basin

with bounded extent can be described by 17

2 fn - Qe

Q2 - m g 3 (9)
On * S

For a cylindrical vessel such that the fluid interface takes a
circular cross section, the smallest value of mo is found at the

first maximum of the Bessel-function Jl(mO D/2). For a vessel of




rectangular cross section, by contrast, the smallest value of

mo2 becomes 112 / D€, This yields

m 3.68 / D circular cross section

O

I

(10)

m T/ D rectangular cross section.

o

It

Consequently, the stabilization condition, for instance for the

cylindrical vessel, becomes

b = 0.54 g 2<M> . (11)

max a Ph - 92

Parametric Resonances

Besides the Egs. (7), (8), and (11), however, there is another
restriction which has to be observed if no new instabilities are
to be induced by the forced oscillations. The resulting criterion
follows from the condition that the instantaneous growth rate
should not exceed the value of @, i.e. uﬁ has to be greater than

the right hand side of Eq. (1) if g there is replaced by s TR

(g < b Hence for the smallest possible wavelength, Lm ,» the

max)' in

growth rate of which can still be fairly described by Eq. (1), we

obtain the condition

> o2m a <?h_?2>. (12)

Pr *

This demonstrates the necessity of physical mechanisms for suppres-

1 o
min

sing fast growing short wavelength perturbations. Such mechanisms
are provided by viscosity, surface tension or finite density gra-
dient in the boundar'y.4 The latter effect is of practical impor-
tance 1n plasma physics, where in the case of diffuse pressure pro-
18

files the short wavelengths can have about the same growth rate

or can be damped.19 However, even for wavelengths larger than Lpyip




some damping 1s required to prevent the development of parametric
resonances, which would occur whenever 2 # nw/2 (n positive in-
teger). Those can be found using a more rigorous treatment which
leads to Mathieu's stability chart.eo Note that the case n < 3

is already covered by Eq. (12).

Dynamic Equilibrium

Furthermore, we are considering the situation where the forced

oscillation is applied in the horizontal direction. The equilibrium

position of the boundary is then no longer horizontal, but is at

some angle, Q& , to the vertical. This case will be treated by ana-

logy with the pendulum with horizontally oscillating support where16
2

stna = —2& . (13)
a Dy S2

Assuming this relation can be generalized to the case of fluids,
and restricting ourselves to small values of (@ , we can use the
Eqs. (9) or (10) to describe the value of 0 in a horizontally
placed vessel with either circular or rectangular (vertical) cross

section. This yields

+
sin a = 0-54agb:qx (gg - ;i) (14)

for the cylindrical vessel and

o ageD Pn *+
sin A = max( = ?2 ) (15)

for the rectangular one.

When starting with a horizontal boundary surface, which is then
exposed to the horizontally applied oscillation, a wave-like pattern
of the surface will be excited. The elgenfrequency, Qg , of the stan-
ding surface waves 1is also described by Eq. (1) if we denote the

quantity L to be the horizontal wavelength of the perturbations.




Hence a rough estimate of Q can be obtained in this case by com-

bining the Eqs. (1) and (13) to give

g L
—_—. (16)
bmax na

sin A =

Eq. (16), of course, is only valid for small amplitude waves. For
large amplitude waves, by contrast, the Eq. (14) or (15) becomes
relevant, although the value of 2 used there is no longer the cor-
rect one since the assumptions leading to Eq. (9) or (10) are vio-

lated in this case.

Experiments

Experimentally, a cylindrical glass vessel of inner diameter
D = 2.8 cm and axial length A = 6 cm was mounted on a vibrator
which applied oscillations to the vessel in the axial direction.
The vessel was completely filled with equal quantities of an
aqueous solution of Potassium-Iodide (?h =1.6 g/cmj) and of a
very viscous oil (SAE 140,5} = 0.9 g/cmj). The problem how to su-
perpose the heavier fluid upon the lighter one was solved - after
some other unsuccessful attempts - by starting off with the static
stable arrangement, i.e. the oil on top. The vibrator was then ad-
Justed to parameters expected to meet the conditions for dynamic
stabilization / Eq. (11)_7 and for dynamic equilibrium / Eq. (14)_7/.
It turned out that for the resulting value of a“w< the condition
(12) was violated when oils of lower viscosity were used. With an
0il of viscosity SAE 90, for instance, the plane boundary surface
started to become covered with bubbles when for W = 3.5 X lO2 sec'l

the value of bmax overcame 47 g. With oil of viscosity SAE 140,

this effect was not observed up to b ook, = 60 g, which was the




greatest acceleration available from the vibrator. These oscillation
parameters were maintained, and the whole device was placed in a
horizontal position, where the boundary surface is determined by

the dynamic equilibrium condition according to Eq. (14).

Photographs of the oscillating surfaces are shown in Fig. 1,
a) with vertical cylinder axis and 5)2 above ?h , and b) with hori-
zontally placed cylinder axis resulting in an inclined boundary
surface. The exposure time was 10'1 sec, and a flash lamp synchro-
nized with each oscillation was used to give a superposition of se-

veral single pictures.

Furthermore, from the horizontal position, Fig. 1b, the device
was turned into the final state of Ph above ?& , 1.e. where the
Rayleigh-Taylor instability is dynamically stabilized. This case
is shown in Fig. lc for W= 2T X 102 sec™! and bmax = 60 g
since this higher frequency produces an even smoother and extremely
plane surface compared with @ = 3.5 x 102 sec'l, where some
(stable) surface waves could still be observed. The latter became
more prominent in the horizontal case shown in Fig. 1b. These
higher frequencies could not be used (keeping boax constant),
since the value of (@ then increased until the surface began to
split up into successive wedge-shaped parts and a sawtooth-like

structure finally developed, each flank of which was again inclined

towards the horizontal.

In the dynamically stabilized state (Fig. lc) the value of Bl e

could gradually be reduced until the stabilization condition was
violated and the horizontal surface behaved like "slipping off",
leading to a turbulent interchange of the fluids. A photograph of

this phase is shown in Fig. 1d, where, at W= 3.45 x lO2 sec-l,




b = 35 g.

max

The last photograph in Fig. 1 shows an example of the wave-like
pattern which is excited when the horizontal oscillation is applied
to an originally horizontal surface; the particular parameters are

2 -1

Ww=2T x 10 sec and bm = 40 g . When the value of a b

ax max
is increased the amplitudes and horizontal wavelengths of this pat-
tern grow and change continously into the above mentioned sawtooth
structure. Preliminary quantitative results on dynamic stability

and equilibrium are shown in Fig. 2, where on the left hand side (a)
the value of bmax/g is plotted versus W ; the theoretically linear

dependence is taken from Eq. (11). On the right hand side (b) the

value of bm 2 sinq/ g D 1is plotted versus W , and there the

ax
theoretical curve is derived from Eq. (14). The good agreement be-
tween the experimental results and the theoretical predictions

shows firstly, that the simple model used for the calculations re-
presents a fair description of the physical processes, and secondly,

that viscosity and surface effects did not affect the gross dynamics

of the fluids determined by the vessel diameter.

The wave-like or sawtooth-like patterns as shown in Fig. le have
also been analyzed for various parameter values, and the results
are plotted in Fig. 3. Although a quantitative description of this
situation is based only on vague assumptions, the results were found
to lie near the theoretical curve based on Eq. (15) and to deviate
from the predictions based on Eq. (16) by less than a factor of two;
better agreement was not expected in view of the more complex si-

tuation of that case.

The experiments described here are being extended in order to
vary the essential parameters (in particular, the difference in den-

sity by using mercury, for instance) and to study the parametric
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resonances more extensively.

Conclusion

It is concluded that the Rayleigh-Taylor instability can be dy -
namically stabilized, and that the corresponding dynamic equilibrium
can be established, both for times which are long compared with
the growth times without oscillation. The quantitative results
agreed with predictions based on simple physical models. Parametric
resonances were only excited 1f the dominating viscosity was too
low. These results encourage further attemps to stabilize dynami -
cally MHD-unstable plasma configurations, which, like the Rayleigh-
Taylor instability, have a whole spectrum of unstable modes, but
where the growth rates of the short wavelength modes also show some

saturation or even damping.
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Figure Captions

Fig. 1
Fig. 2
Fig. >

Photographs showing the boundary surface of two fluids

exposed to enforced oscillations in various directions

2 -1

a) W=1.1T0 x 10° sec ", b 60 g, statically stable

max
arrangement;

b) W=1.1T0 x 10° sec'l, Doy = 60 g, dynamic equilibrium
separating the fluids horizontally;

c) W= 2T x 102 sec-l, Doax = 60 g, statically unstable
arrangement;

d) w=1.1T x 10° sec-l, b .. = 33 8, beginning of tur-
bulent state;

e) W=2T x 102 sec'l, Do = 40 g, wave-like pattern

developing when surface originally horizontal.

Experimental results compared with theoretical predictions
a) for the condition of dynamic stabilization according
to Eq. (11);

b) for the relation of dynamic equilibrium according to
Eq. (14).

~ Experimental results from the sawtooth-like structures

excited by horizontal oscillations. The theoretical curve

is derived from Eq. (15), where the quantity D is now

the altitude of a sawtooth.




Fig.

1
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Photographs showing the boundary surface of two

fluids exposed to enforced oscillations in various
directions:

a) w=1.1Ttx 10° sec”!, b .. =60 g, statically
stable arrangement;

b) W= 1.1Ttx 10° sec_l, Dok = 60 g, dynamic equi-
librium separating the fluids horizontally;

c) W=2T x 102 sec'l, boax = 60 g, statically
unstable arrangement;

d) w= 1.1Tx 10° sec-l, b -« = 33 g, beginning of
turbulent state;

e) W=2 T x 10° sec'l, Bt = 40 g, wave-like pat-

tern developing when surface originally horizontal.
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